It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Free-electron-lasers fill a critical gap in the space of THz-sources as they can reach high average and peak powers with spectral tunability. Using a waveguide in a THz FEL significantly increases the coupling between the relativistic electrons and electromagnetic field enabling large amounts of radiation to be generated in a single passage of electrons through the undulator. In addition to transversely confining the radiation, the dispersive properties of the waveguide critically affect the velocity and slippage of the radiation pulse which determine the central frequency and bandwidth of the generated radiation. In this paper, we characterize the spectral properties of a compact waveguide THz FEL including simultaneous lasing at two different frequencies and demonstrating tuning of the radiation wavelength in the high frequency branch by varying the beam energy and ensuring that the electrons injected into the undulator are prebunched on the scale of the resonant radiation wavelength.
A waveguide can increase the coupling between an electron beam and electromagnetic field in a THz Free Electron Laser. The authors characterize the spectral properties of a compact waveguide FEL including dual-frequency lasing and tunable wavelength.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 UCLA, Department of Physics and Astronomy, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718)
2 Cornell University, Department of Physics, Ithaca, USA (GRID:grid.5386.8) (ISNI:0000 0004 1936 877X)
3 RadiaBeam Technologies, Santa Monica, USA (GRID:grid.456061.0)