Full text

Turn on search term navigation

© 2024 Dong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Boswellic acids (BAs) showed promising effects in cancer treatment, immune response regulation, and anti-inflammatory therapy. We aimed to assess the roles of alpha-BA (α-BA) in treating acute wound healing.

Methods

In vivo wound-healing models were established to evaluate the therapeutic effects of α-BA. Cell assays were conducted to assess the impact of α-BA on cellular biological functions. Western blot analysis was employed to validate the potential mechanisms of action of α-BA.

Results

Animal models indicated that wound healing was notably accelerated in the α-BA group compared to the control group (P < 0.01). Hematoxylin and eosin (HE) staining and enzyme-linked immunosorbent assay (ELISA) assay preliminarily suggested that α-BA may accelerate wound healing by inhibiting excessive inflammatory reactions and increasing the protein levels of growth factors. Cell function experiments demonstrated that α-BA suppressed the proliferation and migration ability of human hypertrophic scar fibroblasts (HSFBs), thereby favoring wound healing. Additionally, α-BA exerted a significant impact on cell cycle progression. Mechanistically, the protein levels of key genes in nuclear factor kappa beta (NF-κB) signaling pathway, including cyclin D1, p65, IκBα, and p-IκBα, were downregulated by α-BA.

Conclusions

α-BA demonstrated the ability to counteract the abnormal proliferation of skin scar tissues, consequently expediting wound healing. These findings suggest its potential for development as a new agent for treating acute wound healing.

Details

Title
Alpha-boswellic acid accelerates acute wound healing via NF-κB signaling pathway
Author
Fang, Dong; Zheng, Lijuan; Zhang, Xuanfen  VIAFID ORCID Logo 
First page
e0308028
Section
Research Article
Publication year
2024
Publication date
Sep 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3100498008
Copyright
© 2024 Dong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.