It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background: The use of antibiotics in dentistry is associated with the emergence and spread of antibiotic-resistant microorganisms, including commensal staphylococci.
Methods: A total of 367 oral samples were collected, from which staphylococci were isolated and identified by using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF). The antibiotic susceptibility of the isolates was determined and molecular characteristics for methicillin-resistant staphylococci was performed.
Results: A total of 103 coagulase-negative staphylococci (CoNS), among them S. warneri, S. haemolyticus, S. saprophyticus, S. pasteuri, S. epidermidis, S. hominis, S. xylosus, S. equorum, S. kloosii, S. succinus, S. cohnii, and S. simulans, were confirmed by MALDI-TOF. Resistance to most tested antibiotics was statistically higher in CoNS than in S. aureus isolates (P-value < 0.05). CoNS isolates showed high resistance to penicillin (S. saprophyticus 88.9%), erythromycin (S. haemolyticus 84.6%), fusidic acid (S. saprophyticus 77.8%), co-trimoxazole (S. epidermidis 71.4%), gentamicin (S. warneri 63.8%), and tetracycline (S. saprophyticus 55.6%). Multidrug resistance was largely observed, especially among S. haemolyticus and S. saprophyticus species. Methicillin-resistance in S. haemolyticus (38.5%), S. saprophyticus (22.2%) and S. aureus (13.5%) was associated with the presence of the mecA gene and SCCmec type IV or V.
Conclusion: Coagulase-negative staphylococci, especially S. haemolyticus and S. saprophyticus, seem to be a reservoir of methicillin resistance and multidrug resistance in the oral cavity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, Gdansk, Poland
2 Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
3 Laboratory of Clinical Microbiology, University Clinical Center, Gdansk, Poland
4 Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran