It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The global interest in market prediction has driven the adoption of advanced technologies beyond traditional statistical models. This paper explores the use of machine learning and deep learning techniques for stock market forecasting. We propose a comprehensive approach that includes efficient feature selection, data preprocessing, and classification methodologies. The wavelet transform method is employed for data cleaning and noise reduction. Feature selection is optimized using the Dandelion Optimization Algorithm (DOA), identifying the most relevant input features. A novel hybrid model, 3D-CNN-GRU, integrating a 3D convolutional neural network with a gated recurrent unit, is developed for stock market data analysis. Hyperparameter tuning is facilitated by the Blood Coagulation Algorithm (BCA), enhancing model performance. Our methodology achieves a remarkable prediction accuracy of 99.14%, demonstrating robustness and efficacy in stock market forecasting applications. While our model shows significant promise, it is limited by the scope of the dataset, which includes only the Nifty 50 index. Broader implications of this work suggest that incorporating additional datasets and exploring different market scenarios could further validate and enhance the model's applicability. Future research could focus on implementing this approach in varied financial contexts to ensure robustness and generalizability.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 VIT-AP University, School of Computer Science and Engineering, Vijayawada, India
2 MLR Institute of Technology, Department of Information Technology, Hyderabad, India
3 SRM University-AP, Department of Computer Science and Engineering, Amaravati, India (GRID:grid.473746.5)
4 Koneru Lakshmaiah Education Foundation, Department of Computer Science and Engineering, Hyderabad, India (GRID:grid.449504.8) (ISNI:0000 0004 1766 2457)
5 VIT-AP University, School of Computer Science and Engineering, Vijayawada, India (GRID:grid.449504.8)