It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Highlights
The constructions under internal and external driving forces were introduced and compared with each other.
The physicochemical properties were analyzed for the assessment of crystalline quality and photoelectric characteristics.
The photocatalytic applications, mechanisms, and developments of the core-shell semiconductor-graphene nanoarchitectures were illustrated in detail.
Semiconductor photocatalysis holds great promise for renewable energy generation and environment remediation, but generally suffers from the serious drawbacks on light absorption, charge generation and transport, and structural stability that limit the performance. The core–shell semiconductor-graphene (CSSG) nanoarchitectures may address these issues due to their unique structures with exceptional physical and chemical properties. This review explores recent advances of the CSSG nanoarchitectures in the photocatalytic performance. It starts with the classification of the CSSG nanoarchitectures by the dimensionality. Then, the construction methods under internal and external driving forces were introduced and compared with each other. Afterward, the physicochemical properties and photocatalytic applications of these nanoarchitectures were discussed, with a focus on their role in photocatalysis. It ends with a summary and some perspectives on future development of the CSSG nanoarchitectures toward highly efficient photocatalysts with extensive application. By harnessing the synergistic capabilities of the CSSG architectures, we aim to address pressing environmental and energy challenges and drive scientific progress in these fields.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Xiamen, People’s Republic of China (GRID:grid.12955.3a) (ISNI:0000 0001 2264 7233)