It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Continuous monitoring of antimicrobial resistance (AMR) in Uganda involves testing bacterial isolates from clinical samples at national and regional hospitals. Although the National Microbiology Reference Laboratory (NMRL) analyzes these isolates for official AMR surveillance data, there's limited integration into public health planning. To enhance the utilization of NMRL data to better inform drug selection and public health strategies in combating antibiotic resistance, we evaluated the trends and spatial distribution of AMR to common antibiotics used in Uganda.
Methods
We analyzed data from pathogenic bacterial isolates from blood, cerebrospinal, peritoneal, and pleural fluid from AMR surveillance data for 2018–2021. We calculated the proportions of isolates that were resistant to common antimicrobial classes. We used the chi-square test for trends to evaluate changes in AMR resistance over the study period.
Results
Out of 537 isolates with 15 pathogenic bacteria, 478 (89%) were from blood, 34 (6.3%) were from pleural fluid, 21 (4%) were from cerebrospinal fluid, and 4 (0.7%) were from peritoneal fluid. The most common pathogen was Staphylococcus aureus (20.1%), followed by Salmonella species (18.8%). The overall change in resistance over the four years was 63–84% for sulfonamides, fluoroquinolones macrolides (46–76%), phenicols (48–71%), penicillins (42–97%), β-lactamase inhibitors (20–92%), aminoglycosides (17–53%), cephalosporins (8.3–90%), carbapenems (5.3–26%), and glycopeptides (0–20%). There was a fluctuation in resistance of Staphylococcus aureus to methicillin (60%-45%) (using cefoxitin resistance as a surrogate for oxacillin resistance) Among gram-negative organisms, there were increases in resistance to tetracycline (29–78% p < 0.001), ciprofloxacin (17–43%, p = 0.004), ceftriaxone (8–72%, p = 0.003), imipenem (6–26%, p = 0.004), and meropenem (7–18%, p = 0.03).
Conclusion
The study highlights a concerning increase in antibiotic resistance rates over four years, with significant increase in resistance observed across different classes of antibiotics for both gram-positive and gram-negative organisms. This increased antibiotic resistance, particularly to commonly used antibiotics like ceftriaxone and ciprofloxacin, makes adhering to the WHO's Access, Watch, and Reserve (AWaRe) category even more critical. It also emphasizes how important it is to guard against the growing threat of antibiotic resistance by appropriately using medicines, especially those that are marked for "Watch" or "Reserve."
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer