Abstract
Introduction. To date, radical surgery remains the best curative option in patients with early-stage lung cancer. In patients with small lung lesions, video-assisted thoracic surgery (VATS) should be increasingly chosen as a fundamental alternative to thoracotomy as it is associated with less postoperative pain and better quality of life. This scenario necessarily increases the need for thoracic surgeons to implement new localization techniques. The conventional near-infrared (NIR) indocyanine green (ICG) method demonstrated a significant limitation in deep cancer recognition, principally due to its intrinsic low-depth tissue penetration. Similarly, the lymph-node sentinel approach conducted by the ICG method was demonstrated to be inefficient, mainly due to the non-specificity of the tracker and the irregular pathway of pulmonary lymph node drainage. Our study aims to evaluate the effectiveness of Cetuximab- IRDye800CW in marking lung nodules and mediastinal lymph nodes. Methods and analysis. This study is defined as an open-label, single-arm, single-stage phase II trial evaluating the effectiveness of Cetuximab-IRDye800CW in detecting tumors and lymph-node metastases in patients with lung cancer who are undergoing video-assisted thoracic surgery (VATS). Cetuximab is a monoclonal antibody that binds, inhibits, and degrade the EGFR. The IRDye® 800CW, an indocyanine-type NIR fluorophore, demonstrated enhanced tissue penetration compared to other NIR dyes. The combination with the clinical approved monoclonal antibody anti-epidermal growth factor EGFR Cetuximab (Cetuximab-IRDye800) has shown promising results as a specific tracker in different cancer types (i.e., brain, pancreas, head, and neck). The study’s primary outcome is focused on the proportion of patients with lung nodules detected during surgery using an NIR camera. The secondary outcomes include a broad spectrum of items, including the proportion of patients with detection of unexpected cancer localization during surgery by NIR camera and the proportion of patients with negative surgical margins, the evaluation of the time spawns between the insertion of the NIR camera and the visualization of the nodule and the possible morbidity of the drug assessed during and after the drug infusion. Ethics and dissemination. This trial has been approved by the Ethical Committee of Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino (Torino, Italy) and by the Italian Medicines Agency (AIFA). Findings will be written as methodology papers for conference presentations and published in peer-reviewed journals. The Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, the University of Torino, and the AIRC Public Engagement Divisions will help identify how best to publicize the findings.
Trial registration EudraCT 202,100,645,430. ClinicalTrials.gov NCT06101394 (October 23, 2023).
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




