It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Formation of a single crystalline oxide semiconductor on an insulating film as a channel material capable of three-dimensional (3D) stacking would enable 3D very-large-scale integration circuits. This study presents a technique for forming single-crystalline In2O3 having no grain boundaries in a channel formation region on an insulating film using the (001) plane of c-axis-aligned crystalline indium gallium zinc oxide as a seed. Vertical field-effect transistors using the single-crystalline In2O3 had an off-state current of 10−21 A μm−1 and electrical characteristics were improved compared with those using non-single-crystalline In2O3: the subthreshold slope was improved from 95.7 to 86.7 mV dec.−1, the threshold voltage showing normally-off characteristics (0.10 V) was obtained, the threshold voltage standard deviation was improved from 0.11 to 0.05 V, the on-state current was improved from 22.5 to 28.8 μA, and a 17-digit on/off ratio was obtained at 27 °C.
Three-dimensional stacking of single-crystalline oxide semiconductors on insulating films is key to large-scale integration of electronic circuits. Here, a technique is reported for single-crystalline In2O3 formation over an insulting film with no grain boundaries, achieving high processing speed and low power consumption.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details









1 Ltd. 398 Hase, Semiconductor Energy Laboratory Co., Atsugi, Japan (GRID:grid.471323.0) (ISNI:0000 0004 0396 0680)
2 Institute of Space and Astronautical Science/JAXA, Sagamihara, Japan (GRID:grid.450279.d) (ISNI:0000 0000 9989 8906)