Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Pancreatic cancer is one of the most deadly forms of cancer. Current treatment options often fail because too little of the chemotherapy gets into the cancer. Hyperthermia, or heat treatment, has shown some promise in treating pancreatic cancer and may make it more likely for the chemotherapy to enter into the cancer. This study aims to design liposomes that can increase the amount of chemotherapy reaching pancreatic cancer by targeting the liposomes with hyperthermia.

Abstract

Treatment of pancreatic ductal adenocarcinoma with gemcitabine is limited by an increased desmoplasia, poor vascularization, and short plasma half-life. Heat-sensitive liposomes modified by polyethylene glycol (PEG; PEGylated liposomes) can increase plasma stability, reduce clearance, and decrease side effects. Nevertheless, translation of heat-sensitive liposomes to the clinic has been hindered by the low loading efficiency of gemcitabine and by the difficulty of inducing hyperthermia in vivo. This study was designed to investigate the effect of phospholipid content on the stability of liposomes at 37 °C and their release under hyperthermia conditions; this was accomplished by employing a two-stage heating approach. First the liposomes were heated at a fast rate, then they were transferred to a holding bath. Thermosensitive liposomes formulated with DPPC: DSPC: PEG2k (80:15:5, mole%) exhibited minimal release of carboxyfluorescein at 37 °C over 30 min, indicating stability under physiological conditions. However, upon exposure to hyperthermic conditions (43 °C and 45 °C), these liposomes demonstrated a rapid and significant release of their encapsulated content. The encapsulation efficiency for gemcitabine was calculated at 16.9%. Additionally, fluorescent analysis during the removal of unencapsulated gemcitabine revealed an increase in pH. In vitro tests with BxPC3 and KPC cell models showed that these thermosensitive liposomes induced a heat-dependent cytotoxic effect comparable to free gemcitabine at temperatures above 41 °C. This study highlights the effectiveness of the heating mechanism and cell models in understanding the current challenges in developing gemcitabine-loaded heat-sensitive liposomes.

Details

Title
Thermosensitive Liposomes for Gemcitabine Delivery to Pancreatic Ductal Adenocarcinoma
Author
Aparicio-Lopez, Cesar B 1   VIAFID ORCID Logo  ; Timmerman, Sarah 1 ; Lorino, Gabriella 1 ; Rogers, Tatiana 2 ; Pyle, Marla 1   VIAFID ORCID Logo  ; Shrestha, Tej B 3 ; Basel, Matthew T 1 

 Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; [email protected] (C.B.A.-L.); [email protected] (S.T.); [email protected] (G.L.); [email protected] (M.P.) 
 Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA; [email protected] 
 Nanotechnology Innovation Center of Kansas State (NICKS), Kansas State University, Manhattan, KS 66506, USA; [email protected] 
First page
3048
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3103787743
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.