Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents the topic review (TR), a novel semi-automatic framework designed to enhance the efficiency and accuracy of literature reviews. By leveraging the capabilities of large language models (LLMs), TR addresses the inefficiencies and error-proneness of traditional review methods, especially in rapidly evolving fields. The framework significantly improves literature review processes by integrating advanced text mining and machine learning techniques. Through a case study approach, TR offers a step-by-step methodology that begins with query generation and refinement, followed by semi-automated text mining to identify relevant articles. LLMs are then employed to extract and categorize key themes and concepts, facilitating an in-depth literature analysis. This approach demonstrates the transformative potential of natural language processing in literature reviews. With an average similarity of 69.56% between generated and indexed keywords, TR effectively manages the growing volume of scientific publications, providing researchers with robust strategies for complex text synthesis and advancing knowledge in various domains. An expert analysis highlights a positive Fleiss’ Kappa score, underscoring the significance and interpretability of the results.

Details

Title
Leveraging LLMs for Efficient Topic Reviews
Author
Gana, Bady 1   VIAFID ORCID Logo  ; Leiva-Araos, Andrés 2   VIAFID ORCID Logo  ; Allende-Cid, Héctor 3   VIAFID ORCID Logo  ; García, José 4   VIAFID ORCID Logo 

 Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile 
 Instituto de Data Science, Facultad de Ingeniería, Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610615, Chile 
 Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile; Knowledge Discovery, Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme (IAIS), Schloss Birlinghoven 1, 53757 Sankt Augustin, Germany; [email protected]; Lamarr Institute for Machine Learning and Artificial Intelligence, 53115 Dortmund, Germany 
 Escuela de Ingeniería en Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso 2340000, Chile; [email protected] 
First page
7675
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3103843054
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.