Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

From an industrial point of view, the milling of 2.5D cavities is a frequent operation, consuming time and presenting optimization potential, especially through a judicious choice of the tool trajectory. Among the different types of trajectories, some have a general spiral-like aspect and can potentially offer a reduced machining time. They are called curvilinear trajectories and are obtained by interpolation between structure curves, which are the numerical solutions of a partial differential equation. In this case, the machine tool will connect points, and the trajectory will be made up of small segments. While these trajectories exhibit all the necessary qualities on a macroscopic level for rapid tool movement, the tangential discontinuities at a microscopic scale, inherent in the discretization, significantly increase the machining time. This article proposes a method to reparameterize the structure curves of the curvilinear spiral with a set of C2 connected Hermit quartic spline patches. This creates a smooth toolpath that can be machined at an average feedrate closer to the programmed one and will, de facto, reduce the machining time. This article shows that the proposed method increases on two representative geometries of cavities and toolpath quality indicators, and reduces the milling time from 10% to 18% as compared to the PDE curvilinear spiral generation method proposed by Bieterman and Sandström. In addition, the proposed method is suitable for any non-convex pocket, with or without island(s).

Details

Title
Hermite Quartic Splines for Smoothing and Sampling a Roughing Curvilinear Spiral Toolpath
Author
Leroy, Cédric 1   VIAFID ORCID Logo  ; Lavernhe, Sylvain 2 ; Rivière-Lorphèvre, Édouard 1   VIAFID ORCID Logo 

 Machine Design and Production Engineering Lab, UMONS Research Institute for Materials Science and Engineering, University of Mons, Place du Parc 20, 7000 Mons, Belgium; [email protected] 
 LURPA, ENS Paris-Saclay, Université Paris-Saclay, Avenue des Sciences 4, 91190 Gif-sur-Yvette, France; [email protected] 
First page
7492
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3103860568
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.