Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

While urban populations are rapidly increasing around the world, floods have been frequently and seriously occurring due to the climate crisis. As existing disaster prevention facilities have specific limitations in completely protecting against flood damages, the concept of resilience, which emphasizes the ability to recover after becoming injured and harmed by a flood, is necessary to mitigate such damages. However, there is still a scarcity of studies that quantitatively show the relationship between the resilience and the socioeconomic costs, even though a variety of evaluation methods exist in the literature. This study aims to quantitively analyze the socioeconomic impact of flooding on the urban environment based on the concept of resilience. A method of evaluating four properties of resilience (redundancy, rapidity, resourcefulness, and robustness) through damage function and network analysis was used to measure changes in resilience against flood damages. In addition, to determine the socioeconomic impact of flooding, the costs incurred due to transportation delays and the lack of labor participation were evaluated. Differences in structural and social systems have led to variations in resilience and socioeconomic costs. As a future study, if the circumstances after flood events based on risk-based recovery can be evaluated, more effective urban flooding defense decisions would be expected.

Details

Title
Socioeconomic Impact on Urban Resilience against Flood Damage
Author
Park, Hyung Jun 1 ; Song, Su Min 1 ; Kim, Dong Hyun 2   VIAFID ORCID Logo  ; Seung Oh Lee 2   VIAFID ORCID Logo 

 Department of Civil Engineering, Hongik University, Seoul 04066, Republic of Korea; [email protected] (H.J.P.); [email protected] (S.M.S.) 
 Department of Civil & Environment Engineering, Hongik University, Seoul 04066, Republic of Korea; [email protected] 
First page
7882
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3103914968
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.