Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cu2Se is an attractive thermoelectric material due to its layered structure, low cost, environmental compatibility, and non-toxicity. These traits make it a promising replacement for conventional thermoelectric materials in large-scale applications. This study focuses on preparing Cu2Se flexible thin films through in situ magnetron sputtering technology while carefully optimizing key preparation parameters, and explores the physical mechanism of thermoelectric property enhancement, especially the power factor. The films are deposited onto flexible polyimide substrates. Experimental findings demonstrate that films grown at a base temperature of 200 °C exhibit favorable performance. Furthermore, annealing heat treatment effectively regulates the Cu element content in the film samples, which reduces carrier concentration and enhances the Seebeck coefficient, ultimately improving the power factor of the materials. Compared to the unannealed samples, the sample annealed at 300 °C exhibited a significant increase in room temperature Seebeck coefficient, rising from 9.13 μVK−1 to 26.73 μVK−1. Concurrently, the power factor improved from 0.33 μWcm−1K−2 to 1.43 μWcm−1K−2.

Details

Title
Optimization of Thermoelectric Properties and Physical Mechanisms of Cu2Se-Based Thin Films via Heat Treatment
Author
Li, Haobin 1 ; Fu, Li 1 ; Chen, Yuexing 1   VIAFID ORCID Logo  ; Liang, Guangxing 1   VIAFID ORCID Logo  ; Luo, Jingting 1 ; Meng, Wei 2 ; Zheng, Zhi 2 ; Zheng, Zhuanghao 1 

 Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; [email protected] (H.L.); [email protected] (F.L.); [email protected] (Y.C.); [email protected] (G.L.); [email protected] (J.L.); [email protected] 
 Key Laboratory for Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, China; [email protected] (Z.Z.) 
First page
1421
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3103924453
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.