Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The optimized sowing method and appropriate seed rate can improve wheat N use efficiency. However, the interactive effect of the sowing method and seed rate on N use efficiency, particularly N uptake and root length density, are unclear. A field experiment was conducted for two growing seasons in southern Shanxi province, China, using a split-plot design with the sowing method as the main plot (wide-belt sowing, WBS, and conventional narrow-drill sowing, NDS) and seed rate as the sub-plot (100–700 m−2). Our results showed that WBS had a significant and positive effect on N use efficiency (yield per unit of available N from the fertilizer and soil, by 4.7–15.4%), and the relatively higher seed rates (>300 or 400 m−2) enlarged the effects. The N use efficiency increases under WBS were mainly attributed to the increases in N uptake before anthesis, resulting from the promoted nodal roots per plant and per unit area, and root length density in the top layer(s). WBS promoted N translocation and the N harvest index, resulting in equivalent grain protein concentration and processing quality compared to NDS. Thus, adopting higher seed rates (>300 m−2) combined with WBS is recommended for achieving greater N efficiencies while maintaining the grain protein concentration and processing quality of winter wheat.

Details

Title
Higher Seed Rates Enlarge the Effects of Wide-Belt Sowing on Root Length Density, Thereby Improving Nitrogen Uptake and Use Efficiencies in Winter Wheat
Author
Wang, Yuechao  VIAFID ORCID Logo  ; Li, Wen; Deng, Yaoyao  VIAFID ORCID Logo  ; Xue, Jianfu  VIAFID ORCID Logo  ; Gao, Zhiqiang
First page
2476
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22237747
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3103955981
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.