Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The demand for novel tissue grafting and regenerative wound care biomaterials is growing as traditional options often fall short in biocompatibility, functional integration with human tissue, associated cost(s), and sustainability. Salmon aquaculture generates significant volumes of waste, offering a sustainable opportunity for biomaterial production, particularly in osteo-conduction/-induction, and de novo clinical/surgical bone regeneration. Henceforth, this study explores re-purposing salmon waste through a standardized pre-treatment process that minimizes the biological waste content, followed by a treatment stage to remove proteins, lipids, and other compounds, resulting in a mineral-rich substrate. Herein, we examined various methods—alkaline hydrolysis, calcination, and NaOH hydrolysis—to better identify and determine the most efficient and effective process for producing bio-functional nano-sized hydroxyapatite. Through comprehensive chemical, physical, and biological assessments, including Raman spectroscopy and X-ray diffraction, we also optimized the extraction process. Our modified and innovative alkaline hydrolysis–calcination method yielded salmon-derived hydroxyapatite with a highly crystalline structure, an optimal Ca/P ratio, and excellent biocompatibility. The attractive nano-scale cellular/tissular properties and favorable molecular characteristics, particularly well-suited for bone repair, are comparable to or even surpass those of synthetic, human, bovine, and porcine hydroxyapatite, positioning it as a promising candidate for use in tissue engineering, wound healing, and regenerative medicine indications.

Details

Title
Efficient Hydroxyapatite Extraction from Salmon Bone Waste: An Improved Lab-Scaled Physico-Chemico-Biological Process
Author
Muñoz, Francisco 1 ; Haidar, Ziyad S 2   VIAFID ORCID Logo  ; Puigdollers, Andreu 3   VIAFID ORCID Logo  ; Guerra, Ignacio 1 ; Padilla, María Cristina 4 ; Ortega, Nicole 5 ; Balcells, Mercedes 6 ; García, María José 1 

 Facultad de Odontología, Universidad Internacional de Cataluña, 08029 Barcelona, Spain 
 Laboratorio BioMAT’X R&D&I (HAiDAR I+D+i LAB), Universidad de los Andes, Santiago 7550000, Chile; Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago 7550000, Chile; Programa de Doctorado en BioMedicina, Facultad de Medicina, Universidad de los Andes, Santiago 7550000, Chile; Programa de Doctorado en Ciencias Odontológicas, Facultad de Odontología, Universidad de los Andes, Santiago 7550000, Chile; Facultad de Odontología, Universidad de los Andes, Santiago 7550000, Chile 
 Área de Ortodoncia, Facultat Internacional de Cataluña, 08195 Barcelona, Spain 
 Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago 7550000, Chile; Programa de Doctorado en BioMedicina, Facultad de Medicina, Universidad de los Andes, Santiago 7550000, Chile; Laboratorio de Investigación e Ingeniería de Biopolímeros (BiopREL), Universidad de los Andes, Santiago 7550000, Chile; Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Santiago 7550000, Chile 
 Laboratorio de Investigación e Ingeniería de Biopolímeros (BiopREL), Universidad de los Andes, Santiago 7550000, Chile 
 Institut Quimic de Sarria, Ramon Llull University, 08017 Barcelona, Spain; [email protected]; MIT Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA 
First page
4002
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3103964056
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.