Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This review paper provides an overview of recent advances in computational fluid dynamics (CFD) simulations of ejector pumps for vacuum generation. It examines various turbulence models, multiphase flow approaches, and numerical techniques employed to capture complex flow phenomena like shock waves, mixing, phase transitions, and heat/mass transfer. Emphasis is placed on the comprehensive assessment of flow characteristics within ejectors, including condensation effects such as nucleation, droplet growth, and non-equilibrium conditions. This review highlights efforts in optimizing ejector geometries and operating parameters to enhance the entrainment ratio, a crucial performance metric for ejectors. The studies reviewed encompass diverse working fluids, flow regimes, and geometric configurations, underscoring the significance of ejector technology across various industries. While substantial progress has been made in developing advanced simulation techniques, several challenges persist, including accurate modeling of real gas behavior, phase change kinetics, and coupled heat/mass transfer phenomena. Future research efforts should focus on developing robust multiphase models, implementing advanced turbulence modeling techniques, integrating machine learning-based optimization methods, and exploring novel ejector configurations for emerging applications.

Details

Title
Recent Advances in Numerical Simulation of Ejector Pumps for Vacuum Generation—A Review
Author
Jaber Sadeghiseraji  VIAFID ORCID Logo  ; Garcia-Vilchez, Mercè  VIAFID ORCID Logo  ; Castilla, Robert  VIAFID ORCID Logo  ; Raush, Gustavo  VIAFID ORCID Logo 
First page
4479
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3103970676
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.