Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As an effective physical field feature to perceive ferromagnetic targets, magnetic anomaly is widely used in covert marine surveillance tasks. However, its practical usability is affected by the complex marine magnetic noise interference, making robust magnetic anomaly detection (MAD) quite a challenging task. Recently, learning-based detectors have been widely studied for the discrimination of magnetic anomaly signal and achieve superior performance than traditional rule-based detectors. Nevertheless, learning-based detectors require abundant data for model parameter training, which are difficult to access in practical marine applications. In practice, target magnetic anomaly data are usually expensive to acquire, while rich marine magnetic noise data are readily available. Thus, there is an urgent need to develop effective models to learn discriminative features from the abundant marine magnetic noise data for newly appearing target anomaly detection. Motivated by this, in this paper we formulate MAD as a single-edge detection problem and develop a self-supervised marine noise learning approach for target anomaly classification. Specifically, a sparse autoencoder network is designed to model the marine noise and restore basis geomagnetic field from the collected noisy magnetic data. Subsequently, reconstruction error of the network is used as a statistical decision criterion to discriminate target magnetic anomaly from cluttered noise. Finally, we verify the effectiveness of the proposed approach on real sea trial data and compare it with seven state-of-the-art MAD methods on four numerical indexes. Experimental results indicate that it achieves a detection accuracy of 93.61% and has a running time of 21.06 s on the test dataset, showing superior MAD performance over its counterparts.

Details

Title
Self-Supervised Marine Noise Learning with Sparse Autoencoder Network for Generative Target Magnetic Anomaly Detection
Author
Wang, Shigang  VIAFID ORCID Logo  ; Zhang, Xiangyuan; Zhao, Yifan; Yu, Haozi; Li, Bin
First page
3263
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3104053200
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.