Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The utilization of hydraulic fracturing technology is indispensable for unlocking the potential of tight oil and gas reservoirs. Understanding and accurately evaluating the impact of fracturing is pivotal in maximizing oil and gas production and optimizing wellbore performance. Currently, evaluation methods based on acoustic logging, such as orthogonal dipole anisotropy and radial tomography imaging, are widely used. However, when the fractures generated by hydraulic fracturing form a network-like pattern, orthogonal dipole anisotropy fails to accurately assess the fracturing effects. Radial tomography imaging can address this issue, but it is challenged by high manpower and time costs. This study aims to develop a more efficient and accurate method for evaluating fracturing effects in tight reservoirs using deep learning techniques. Specifically, the method utilizes dipole array acoustic logging curves recorded before and after fracturing. Manual labeling was conducted by integrating logging data interpretation results. An improved WGAN-GP was employed to generate adversarial samples for data augmentation, and fracturing effect evaluation was implemented using SE-ResNet, ResNet, and DenseNet. The experimental results demonstrated that ResNet with residual connections is more suitable for the dataset in this study, achieving higher accuracy in fracturing effect evaluation. The inclusion of the SE module further enhanced model accuracy by adaptively adjusting the weights of feature map channels, with the highest accuracy reaching 99.75%.

Details

Title
Evaluation of Fracturing Effect of Tight Reservoirs Based on Deep Learning
Author
Feng, Ankang; Ke, Yuxin; Chuang Hei  VIAFID ORCID Logo 
First page
5775
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3104092579
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.