It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Worldwide, governments imposed non-pharmaceutical interventions (NPIs) during the COVID-19 pandemic to contain the pandemic more effectively. We examined the effectiveness of individual NPIs in the United States during the first wave of the pandemic. Three types of analyses were performed. First, a prototypical Bayesian hierarchical model was employed to gauge the effectiveness of five NPIs and they are gathering restriction, restaurant capacity restriction, business closure, school closure, and stay-at-home order in the 42 states with over 100 deaths by the end of the wave. Second, we examined the effectiveness of the face mask mandate, the sixth and most controversial NPI by counterfactual modeling, which is a variant of the prototypical Bayesian hierarchical model allowing us to answer the question of what if the state had imposed the mandate or not. The third analysis used an advanced Bayesian hierarchical model to evaluate the effectiveness of all six NPIs in all 50 states and the District of Columbia, and thereby provide a full-scale estimation of the effectiveness of NPIs and the relative effectiveness of each NPI in the entire United States. Our results have enhanced the collective knowledge on the general effectiveness of NPIs in arresting the spread of COVID-19.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 State University of New York at Stony Brook, Department of Applied Mathematics and Statistics, Stony Brook, USA (GRID:grid.36425.36) (ISNI:0000 0001 2216 9681)
2 University of California at Los Angeles, Department of Biostatistics, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0001 2167 8097)