It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Borophene, a novel two-dimensional material unveiled in 1998, has garnered significant interest among researchers due to its distinct mechanical and electrical characteristics. Efforts to experimentally synthesize borophene continue to captivate researchers’ interest in recent years. Given the current lack of experimental studies on the interaction between water and the borophene surface, molecular dynamics simulation offers a valuable approach for predicting the substance’s reactivity with water. Additionally, such simulations can assess the hydrophilicity and hydrophobicity of borophene, providing valuable insights into its properties. In our current research, we utilized reactive molecular dynamics simulation to investigate the wetting behavior of borophene. Our findings reveal that the borophene surface exhibits hydrophobic characteristics, demonstrating anisotropic wettability. Specifically, the water contact angle was calculated to be 149.11° along the zigzag direction and 148.4° along the armchair direction. The contour map of the interaction energy between a water molecule and the borophene surface revealed a notable energy barrier in the zigzag direction. This barrier contributes to the asymmetric spreading of the water droplet on the surface. Density profiles and radial pair distribution function (RDF) diagrams of the water droplet on the borophene surface further corroborated the hydrophobic nature of borophene by indicating a significant distance between the water droplet and the surface. Moreover, analysis of the number of hydrogen bonds demonstrated that borophene efficiently utilizes nearly all its capacity to form hydrogen bonds. Additionally, we compared the wettability of borophene with that of other two-dimensional materials, such as various graphene allotropes and phosphorene, which have been subjects of recent investigation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Tehran, Department of Physical Chemistry, School of Chemistry, College of Science, Tehran, Iran (GRID:grid.46072.37) (ISNI:0000 0004 0612 7950)