Abstract

Periodically driven quantum systems exhibit a diverse set of phenomena but are more challenging to simulate than their equilibrium counterparts. Here, we introduce the Quantum High-Frequency Floquet Simulation (QHiFFS) algorithm as a method to simulate fast-driven quantum systems on quantum hardware. Central to QHiFFS is the concept of a kick operator which transforms the system into a basis where the dynamics is governed by a time-independent effective Hamiltonian. This allows prior methods for time-independent simulation to be lifted to simulate Floquet systems. We use the periodically driven biaxial next-nearest neighbor Ising (BNNNI) model, a natural test bed for quantum frustrated magnetism and criticality, as a case study to illustrate our algorithm. We implemented a 20-qubit simulation of the driven two-dimensional BNNNI model on Quantinuum’s trapped ion quantum computer. Our error analysis shows that QHiFFS exhibits not only a cubic advantage in driving frequency ω but also a linear advantage in simulation time t compared to Trotterization.

Details

Title
Large-scale simulations of Floquet physics on near-term quantum computers
Author
Eckstein, Timo 1   VIAFID ORCID Logo  ; Mansuroglu, Refik 2   VIAFID ORCID Logo  ; Czarnik, Piotr 3   VIAFID ORCID Logo  ; Zhu, Jian-Xin 4   VIAFID ORCID Logo  ; Hartmann, Michael J. 5   VIAFID ORCID Logo  ; Cincio, Lukasz 6   VIAFID ORCID Logo  ; Sornborger, Andrew T. 7   VIAFID ORCID Logo  ; Holmes, Zoë 8   VIAFID ORCID Logo 

 Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Physics, Erlangen, Germany (GRID:grid.5330.5) (ISNI:0000 0001 2107 3311); Max-Planck Institute for the Science of Light, Erlangen, Germany (GRID:grid.419562.d) (ISNI:0000 0004 0374 4283); Los Alamos National Laboratory, Theoretical Division, Los Alamos, USA (GRID:grid.148313.c) (ISNI:0000 0004 0428 3079) 
 Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Physics, Erlangen, Germany (GRID:grid.5330.5) (ISNI:0000 0001 2107 3311) 
 Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, Kraków, Poland (GRID:grid.5522.0) (ISNI:0000 0001 2337 4740); Jagiellonian University, Mark Kac Center for Complex Systems Research, Kraków, Poland (GRID:grid.5522.0) (ISNI:0000 0001 2337 4740) 
 Los Alamos National Laboratory, Theoretical Division, Los Alamos, USA (GRID:grid.148313.c) (ISNI:0000 0004 0428 3079); Los Alamos National Laboratory, Center for Integrated Nanotechnologies, Los Alamos, USA (GRID:grid.148313.c) (ISNI:0000 0004 0428 3079) 
 Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Physics, Erlangen, Germany (GRID:grid.5330.5) (ISNI:0000 0001 2107 3311); Max-Planck Institute for the Science of Light, Erlangen, Germany (GRID:grid.419562.d) (ISNI:0000 0004 0374 4283) 
 Los Alamos National Laboratory, Theoretical Division, Los Alamos, USA (GRID:grid.148313.c) (ISNI:0000 0004 0428 3079) 
 Los Alamos National Laboratory, Information Sciences, Los Alamos, USA (GRID:grid.148313.c) (ISNI:0000 0004 0428 3079) 
 Los Alamos National Laboratory, Theoretical Division, Los Alamos, USA (GRID:grid.148313.c) (ISNI:0000 0004 0428 3079); École Polytechnique Fédérale de Lausanne, Laboratory of Quantum Information and Computation, Lausanne, Switzerland (GRID:grid.5333.6) (ISNI:0000 0001 2183 9049) 
Pages
84
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20566387
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3104347364
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.