It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Iodine is an essential element for the synthesis of thyroid hormones. Therefore, a reliable marker of iodine supply is important. Iodine is predominantly excreted via kidneys, but also via salivary glands. Our aim was to introduce a new and simple method for determination of salivary iodine concentration (SLIC).
Self-prepared chemicals and standards for Sandell-Kolthoff reaction on microplate with ammonium peroxydisulfate (AP) in the range 0−400 µg/L were used. Suitability of water-based standards (WBS) and artificial saliva-based standards (ASS) for standard curve were tested. We followed standards for method validation, defined concentration of used AP and compared our results with Inductively Coupled Plasma Mass Spectrometry (ICP-MS).
WBS gave more reliable results than ASS as an underestimation of iodine concentration was found for ASS. LoB was 6.5 µg/L, LoD 12.0 µg/L, therefore analytical range was 12−400 µg/L. Intra- and inter-assay imprecisions at iodine concentrations, namely 20, 100, 165, and 350 µg/L were 18.4, 5.1, 5.7, and 2.8%, respectively, and 20.7, 6.7, 5.1, and 4.3%, respectively. Suitable molarity of AP was 1.0 mol/L and showed no difference to 1.5 mol/L (P values for samples with concentration 40, 100, and 150 µg/L, were 0.761, 0.085, and 0.275, respectively), whereas there was a significant change using 0.5 mol/L (P<0.001). Saliva samples could be diluted up to 1:8. There was no interference of thiocyanate and caffeine up to 193.5 mg/L. Our original method was comparable to ICP-MS. Spaerman coefficient was 0.989 (95% CI: 0.984−0.993).
The new method for SLIC determination is in excellent agreement with ICP-MS and easy-to-use.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Division of Nuclear Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
2 Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
3 Division of Nuclear Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia