Abstract

The detection and tracking of metastatic cancer over the lifetime of a patient remains a major challenge in clinical trials and real-world care. Advances in deep learning combined with massive datasets may enable the development of tools that can address this challenge. We present NYUMets-Brain, the world’s largest, longitudinal, real-world dataset of cancer consisting of the imaging, clinical follow-up, and medical management of 1,429 patients. Using this dataset we developed Segmentation-Through-Time, a deep neural network which explicitly utilizes the longitudinal structure of the data and obtained state-of-the-art results at small (<10 mm3) metastases detection and segmentation. We also demonstrate that the monthly rate of change of brain metastases over time are strongly predictive of overall survival (HR 1.27, 95%CI 1.18-1.38). We are releasing the dataset, codebase, and model weights for other cancer researchers to build upon these results and to serve as a public benchmark.

Cancer is a dynamic disease, with one of its deadly complications being metastatic brain tumors. Here, the authors present a large, multimodal, longitudinal dataset of metastatic cancer, assembled from real world data for cancer research and artificial intelligence (AI) model development. They train time-dependent AI models, and find that novel, dynamic biomarkers exist that are predictive of systemic disease control and overall survival.

Details

Title
Longitudinal deep neural networks for assessing metastatic brain cancer on a large open benchmark
Author
Link, Katherine E. 1   VIAFID ORCID Logo  ; Schnurman, Zane 2 ; Liu, Chris 3 ; Kwon, Young Joon (Fred) 4 ; Jiang, Lavender Yao 5   VIAFID ORCID Logo  ; Nasir-Moin, Mustafa 6   VIAFID ORCID Logo  ; Neifert, Sean 2 ; Alzate, Juan Diego 2   VIAFID ORCID Logo  ; Bernstein, Kenneth 2   VIAFID ORCID Logo  ; Qu, Tanxia 7 ; Chen, Viola 8 ; Yang, Eunice 9 ; Golfinos, John G. 2 ; Orringer, Daniel 2   VIAFID ORCID Logo  ; Kondziolka, Douglas 2 ; Oermann, Eric Karl 10   VIAFID ORCID Logo 

 NYU Langone Health, Department of Neurosurgery, New York, USA (GRID:grid.240324.3) (ISNI:0000 0001 2109 4251); NVIDIA, Santa Clara, USA (GRID:grid.451133.1) (ISNI:0000 0004 0458 4453) 
 NYU Langone Health, Department of Neurosurgery, New York, USA (GRID:grid.240324.3) (ISNI:0000 0001 2109 4251) 
 NYU Langone Health, Department of Neurosurgery, New York, USA (GRID:grid.240324.3) (ISNI:0000 0001 2109 4251); NYU Tandon School of Engineering, Electrical and Computer Engineering, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753) 
 NYU Langone Health, Department of Radiology, New York, USA (GRID:grid.240324.3) (ISNI:0000 0001 2109 4251) 
 NYU Langone Health, Department of Neurosurgery, New York, USA (GRID:grid.240324.3) (ISNI:0000 0001 2109 4251); New York University, Center for Data Science, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753) 
 Harvard Medical School, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X) 
 NYU Langone Health, Department of Radiation Oncology, New York, USA (GRID:grid.240324.3) (ISNI:0000 0001 2109 4251) 
 Eikon Therapeutics, New York, USA (GRID:grid.240324.3) 
 Columbia University Vagelos College of Surgeons and Physicians, New York, USA (GRID:grid.21729.3f) (ISNI:0000 0004 1936 8729) 
10  NYU Langone Health, Department of Neurosurgery, New York, USA (GRID:grid.240324.3) (ISNI:0000 0001 2109 4251); NYU Langone Health, Department of Radiology, New York, USA (GRID:grid.240324.3) (ISNI:0000 0001 2109 4251); New York University, Center for Data Science, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753) 
Pages
8170
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3106220928
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.