It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The study focuses on synthesizing wollastonite using bypass and silica fume waste materials as starting materials. The novelty of this work is the utilization of temperature-induced forming technique for the synthesis of wollastonite. Bypass and silica fume are mixed with various CaO/SiO2 ratios and then cast and fired at temperatures ranging from 900 to 1200 °C. Rheological properties and zeta potential are characterized for the slurries to optimize the dispersant percentage. The fired samples' phase composition, structure properties, apparent porosity, linear shrinkage, and compressive strength are characterized. Results show that the sample with a CaO: SiO2 ratio of 1:1.45 is the optimum composition for forming mainly pure β-wollastonite at 1100 °C, which changed into pseudo-wollastonite at about 1150 °C. The best physical and mechanical properties are obtained at 1170 °C, including apparent porosity of 8%, bulk density of 2.2 g/cm3, linear shrinkage of 13%, and compressive strength of 40 MPa, which widens its ceramic applications.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 National Research Centre (NRC), Refractories, Ceramics, and Building Materials Department, Giza, Egypt (GRID:grid.419725.c) (ISNI:0000 0001 2151 8157)
2 National Research Centre (NRC), Refractories, Ceramics, and Building Materials Department, Giza, Egypt (GRID:grid.419725.c) (ISNI:0000 0001 2151 8157); Pharos University, Alexandria, Egypt (GRID:grid.442603.7) (ISNI:0000 0004 0377 4159)