It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this paper, a patterned graphene metamaterial terahertz absorber is theoretically designed. The proposed absorber consists of a gold layer, a dielectric layer of SiO2, and graphene. The sensing sensitivity of the proposed absorber is simulated for the absence and presence of a square convex nanostructure, trapezoidal convex nanostructure, and rounded convex nanostructure. The sensitivity comparison between convex and absent convex nanostructures is studied, compared to no convex nanostructure, the simulated results show that the sensing sensitivity can be improved with the convex nanostructures, it is found that the absorber has two obvious absorption peaks, and it is insensitive to TE and TM polarization, and the maximum sensitivity corresponding to low-frequency and high-frequency modes is 0.911 THz RIU−1 and 1.561 THz RIU−1, respectively. Our work will play an important role in improving the sensing sensitivity of the graphene metamaterial absorber. Meanwhile, it can also greatly promote the application of biological sensing, modulation, integrated photodetectors, frequency selectors, sensors, filters and so on.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 College of Science, Guizhou University of Engineering Science , Bijie, Guizhou 551700, People’s Republic of China
2 No. 2 Middle School of Qianxi , Bijie, Guizhou 551500, People’s Republic of China
3 College of Science, Guizhou University of Engineering Science , Bijie, Guizhou 551700, People’s Republic of China; College of Physical Science and Technology, Southwest University , Chongqing 400715, People’s Republic of China