Full text

Turn on search term navigation

© 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Reintroducing locally extinct/extirpated species has been considered as an approach for restoring ecosystems. Although such projects share the same goals of rebuilding previously affected ecosystems, the overall impacts that such reintroductions generate on both ecosystems and human society, i.e., on the social-ecological system, are difficult to measure. We propose a system dynamics approach, a platform on which both natural and social scientists could collaborate to identify the social-ecological impacts of species reintroduction as well as factors that affect such decision making. We use cases in Japan to demonstrate the potential applicability of system dynamics in terms of (1) understanding the impacts of a previously reintroduced species, the Oriental Stork (Ciconia boyciana), and (2) predicting the impacts of reintroduction of wolves (Canis lupus). We present a causal loop diagram of the social and ecological effects of Oriental Stork reintroduction, and we discuss how the relationships between factors could be articulated based on empirical data and ongoing projects in Japan. The model demonstrates how local residents began to appreciate the rich biodiversity, including the Oriental Stork, following its reintroduction, and how public support toward such reintroduction enhanced further projects to reintroduce these species in different parts of Japan. A similar diagram, created to illustrate the social and ecological effects of the potential reintroduction of wolves to Japan, demonstrates how social factors such as environmental education and public attitudes could affect decision making as well as ecological factors such as predator-prey dynamics and overall biodiversity. Further, human-wolf conflicts could negatively affect the overall loop. Creating causal loop diagrams can help managers and stakeholders understand that species reintroduction projects need to be considered via an interdisciplinary approach. The models illustrate that these problems are dynamic and that the factors affecting or affected by such projects change over time, implying the importance of both the spatial and temporal scales in managing reintroduction projects.

Details

Title
Developing a system model for articulating the social-ecological impacts of species reintroduction
Author
Sakurai, Ryo  VIAFID ORCID Logo  ; Uehara, Takuro  VIAFID ORCID Logo  ; Tsunoda, Hiroshi  VIAFID ORCID Logo  ; Enari, Hiroto  VIAFID ORCID Logo  ; Stedman, Richard C  VIAFID ORCID Logo  ; Onuma, Ayumi  VIAFID ORCID Logo 
Section
Synthesis
Publication year
2024
Publication date
Jun 2024
Publisher
Resilience Alliance
e-ISSN
17083087
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3106756076
Copyright
© 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.