Full text

Turn on search term navigation

© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Nonlinear nanophotonic devices have shown great potential for on‐chip information processing, quantum source, 3D microfabrication, greatly promoting the developments of integrated optics, quantum science, nanoscience and technologies, etc. To promote the applications of nonlinear nanodevices, improving the nonlinear efficiency, expanding the spectra region of nonlinear response and reducing device thickness are three key issues. Herein, this study focuses on the nonlinear effect of third‐harmonic generation (THG), and present a thin Si meta‐sructure to improve the THG efficiency in the ultraviolet (UV) region. The measured THG efficiency is up to 10−5 at an emission wavelength of 309 nm. Also, the THG nanosystem is only 100 nm in thickness, which is two–five times thinner than previous all‐dielectric nanosystems applied in THG studies. These findings not only present a powerful thin meta‐structure with highly efficient THG emission in UV region, but also provide a constructive avenue for further understanding the light–matter interactions at subwavelength scales, guiding the design and fabricating of advanced photonic devices in future.

Details

Title
Highly Efficient Ultraviolet Third‐Harmonic Generation in an Isolated Thin Si Meta‐Structure
Author
Deng, Yanhui 1 ; Shi, Zhonghong 1 ; Zheng, Yaqin 1 ; Zhang, Houjiao 1 ; Li, Haoyang 1 ; Li, Siyang 1 ; Zhou, Zhang‐Kai 1   VIAFID ORCID Logo 

 State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat‐sen University, Guangzhou, China 
Section
Research Article
Publication year
2024
Publication date
Sep 1, 2024
Publisher
John Wiley & Sons, Inc.
e-ISSN
21983844
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3109686355
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.