Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, a spatial two-degree-of-freedom (2DOF) parallel platform based on electromagnetic redundant drive and its control method are investigated. The platform is redundantly driven by three electromagnetic-spring conforming branched chains, and the design provides better flexibility and responsiveness than conventional parallel structures. The introduction of the electromagnetic drive alleviates the stresses within the conventional rigid redundant drive structure and reduces the detrimental effects associated with rigid redundancy. In this paper, the structure and equivalent SPU model of the platform are first introduced, with S referring to the kinematic sub, P to the spherical sub, and U to the universal joint. The degrees of freedom of the platform are analyzed, and the inverse kinematic model and velocity Jacobi matrix are derived, so as to derive the relationship between the pitch, roll angles, and length of the gimbal chain, and the relational equation between the angle and the current is further established to realize the electromagnetic control of the parallel redundant platform. The control part is realized as follows. Firstly, the angle information of the platform is obtained from the gyroscope to the microcontroller, the filtered angle is derived through the Untraceable Kalman Filter (UKF), and the angle value can be fused with data by both the mathematical model and PID algorithm to introduce the current value required to achieve the balance and realize the balance. In the simulation part, this paper uses Simulink and Simscape in MATLAB for joint simulation, and by giving the simulated trajectory and the desired trajectory of the joints, the driving force diagrams of the three branched chains based on the Least-Second Paradigm method are derived, and the trajectory error and driving force error are given to validate the reliability of the method of this paper.

Details

Title
Research on the Control Method of a 2DOF Parallel Platform Based on Electromagnetic Drive
Author
Wang, Wei 1 ; Cao, Jinlong 2 ; Liu, Xu 2 ; Ye, Yangguang 2 ; Yang, Hao 2 ; Zhang, Weilun 2 ; Huang, Xudong 2 

 Hubei Key Laboratory of Modern Manufacturing Qualtity Engineering, Wuhan 430068, China; School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China 
 School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China 
First page
347
Publication year
2024
Publication date
2024
Publisher
MDPI AG
ISSN
20760825
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110278918
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.