Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

An aeroengine faces multi-source uncertainty consisting of aeroengine epistemic uncertainty and the control system stochastic uncertainty during operation. This paper investigates actuator fault estimation under multi-source uncertainty to enhance the fault diagnosis capability of aero-engine control systems in complex environments. With the polynomial chaos expansion-based discrete stochastic model quantification, the optimal filter under multi-source uncertainty, the Hyperelliptic Kalman Filter, is proposed. Meanwhile, by treating actuator fault as unknown input, the Two-stage Hyperelliptic Kalman Filter (TSHeKF) is also proposed to achieve optimal fault estimation under multi-source uncertainty. However, considering that the biases of the model are often fixed for the individual, the TSHeKF-based fault estimation is robust and leads to inevitable conservativeness. By adding the additional estimation of the unknown deviation in state function caused by probabilistic system parameters, the hybrid fault observer (HFO) is proposed based on the TSHeKF and realizes conservativeness-reduced estimation for actuator fault under multi-source uncertainty. Numerical simulations show the effectiveness and optimality of the proposed HFO in state estimation, output prediction, and fault estimation for both single and multi-fault modes, when considering multi-source uncertainty. Furthermore, Monte Carlo experiments have demonstrated that the HFO-based optimal fault estimation is less conservative and more accurate than the Two-stage Kalman Filter and TSHeKF, providing better safety and more reliable aeroengine operation assurance.

Details

Title
Two-Stage Hyperelliptic Kalman Filter-Based Hybrid Fault Observer for Aeroengine Actuator under Multi-Source Uncertainty
Author
Wang, Yang 1 ; Rui-Qian, Sun 2 ; Lin-Feng, Gou 1 

 School of Power and Energy, Northwestern Polytechnical University, Xi’an 710129, China; [email protected] (Y.W.); [email protected] (L.-F.G.) 
 AVIC Xi’an Aeronautics Computing Technique Research Institute, Xi’an 710065, China 
First page
736
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22264310
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110282698
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.