Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background: Oxidative stress, associated with diseases and aging, underscores the therapeutic potential of natural antioxidants. Flavonoids, known for scavenging free radicals and modulating cell signaling, offer significant health benefits and contribute to longevity. To explore their in vivo effects, we investigated the antioxidant activity of quercetin, apigenin, luteolin, naringenin, and genistein, using Saccharomyces cerevisiae as a model organism. Methods: We performed viability assays to evaluate the effects of these compounds on cell growth, both in the presence and absence of H2O2. Additional assays, including spot assays, drug drop tests, and colony-forming unit assays, were also conducted. Results: Viability assays indicated that the tested compounds are non-toxic. H2O2 reduced yeast viability, but flavonoid-treated cells showed increased resistance, confirming their protective effect. Polyphenols scavenged intracellular reactive oxygen species (ROS) and protected cells from oxidative damage. Investigations into defense systems revealed that H2O2 induced catalase activity and oxidized glutathione accumulation, both of which were reduced by polyphenol treatment. Conclusions: The tested natural compounds enhance cell viability and reduce oxidative damage by scavenging ROS and modulating antioxidant defenses. These results suggest their potential as supplements and pave the way for further research.

Details

Title
In Vivo Antioxidant Activity of Common Dietary Flavonoids: Insights from the Yeast Model Saccharomyces cerevisiae
Author
Assalve, Graziana; Lunetti, Paola  VIAFID ORCID Logo  ; Zara, Vincenzo; Ferramosca, Alessandra  VIAFID ORCID Logo 
First page
1103
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763921
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110294174
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.