Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Soil, a non-renewable resource, requires continuous monitoring to prevent degradation and support sustainable agriculture. Visible-near-infrared (Vis-NIR) spectroscopy is a rapid and cost-effective method for predicting soil properties. While traditional machine learning methods are commonly used for modeling Vis-NIR spectral data, large datasets may benefit more from advanced deep learning techniques. In this study, based on the large soil spectral library LUCAS, we aimed to enhance regression model performance in soil property estimation by combining Transformer and convolutional neural network (CNN) techniques to predict 11 soil properties (clay, silt, pH in CaCl2, pH in H2O, CEC, OC, CaCO3, N, P, and K). The Transformer-CNN model accurately predicted most soil properties, outperforming other methods (partial least squares regression (PLSR), random forest regression (RFR), support vector machine regression (SVR), Long Short-Term Memory (LSTM), ResNet18) with a 10–24 percentage point improvement in the coefficient of determination (R2). The Transformer-CNN model excelled in predicting pH in CaCl2, pH in H2O, OC, CaCO3, and N (R2 = 0.94–0.96, RPD > 3) and performed well for clay, sand, CEC, P, and K (R2 = 0.77–0.85, 2 < RPD < 3). This study demonstrates the potential of Transformer-CNN in enhancing soil property prediction, although future work should aim to optimize computational efficiency and explore a wider range of applications to ensure its utility in different agricultural settings.

Details

Title
A Novel Transformer-CNN Approach for Predicting Soil Properties from LUCAS Vis-NIR Spectral Data
Author
Cao, Liying; Sun, Miao; Yang, Zhicheng; Jiang, Donghui; Yin, Dongjie; Duan, Yunpeng
First page
1998
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110302134
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.