Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents a study on controlling a rotary inverted pendulum (RIP) system using a hierarchical sliding mode control (HSMC) approach. The objective is to swing up and stabilize the pendulum at a desired position. The proposed HSMC controller addresses the underactuation challenge through a hierarchical structure of sliding surfaces. The particle swarm optimization (PSO) algorithm is used to optimize the controller parameters. Simulations were performed to evaluate the performance of the HSMC controller at different initial pendulum angles, demonstrating its effectiveness in achieving swing-up and stabilization. The integration of the PSO algorithm enhances the controller’s adaptability and robustness, emphasizing the benefits of combining optimization algorithms with controller parameter tuning for underactuated systems like the RIP.

Details

Title
Optimized Hierarchical Sliding Mode Control for the Swing-Up and Stabilization of a Rotary Inverted Pendulum
Author
Pham, Duc-Binh; Dao, Quy-Thinh  VIAFID ORCID Logo  ; Thi-Van-Anh, Nguyen  VIAFID ORCID Logo 
First page
282
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
26734052
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110347186
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.