Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Conventional cancer treatments, based on chemotherapy and radiotherapy, are often effective but suffer from serious side effects and a potential risk of resistance. Dual therapies, combining DNA alkylating agents and antimicrobial peptides, are generating great interest. Within chemotherapies, a frequently used mechanism is DNA alkylation, inducing DNA damage and subsequent cell death. Antimicrobial peptides, in turn, have demonstrated their efficacy as anticancer agents due to their ability to selectively alter cancer cell membranes. In this review, our aim has been to explore the synergistic potential of these two therapeutic modalities when used together.

Abstract

Cancer remains one of the most difficult diseases to treat, requiring continuous research into innovative therapeutic strategies. Conventional treatments such as chemotherapy and radiotherapy are effective to a certain extent but often have significant side effects and carry the risk of resistance. In recent years, the concept of dual-acting therapeutics has attracted considerable attention, particularly the combination of DNA alkylating agents and antimicrobial peptides. DNA alkylation, a well-known mechanism in cancer therapy, involves the attachment of alkyl groups to DNA, leading to DNA damage and subsequent cell death. Antimicrobial peptides, on the other hand, have been shown to be effective anticancer agents due to their ability to selectively disrupt cancer cell membranes and modulate immune responses. This review aims to explore the synergistic potential of these two therapeutic modalities. It examines their mechanisms of action, current research findings, and the promise they offer to improve the efficacy and specificity of cancer treatments. By combining the cytotoxic power of DNA alkylation with the unique properties of antimicrobial peptides, dual-action therapeutics may offer a new and more effective approach to fighting cancer.

Details

Title
Dual-Action Therapeutics: DNA Alkylation and Antimicrobial Peptides for Cancer Therapy
Author
Celia María Curieses Andrés 1 ; José Manuel Pérez de la Lastra 2   VIAFID ORCID Logo  ; Elena Bustamante Munguira 1 ; Celia Andrés Juan 3   VIAFID ORCID Logo  ; Pérez-Lebeña, Eduardo 4 

 Hospital Clínico Universitario de Valladolid, Avenida de Ramón y Cajal, 3, 47003 Valladolid, Spain; [email protected] (C.M.C.A.); [email protected] (E.B.M.) 
 Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain 
 Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain; [email protected] 
 Sistemas de Biotecnología y Recursos Naturales, 47625 Valladolid, Spain; [email protected] 
First page
3123
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110388016
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.