Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study focuses on a structural element bio-mimicked from the human cranium (HC) into a shell element. As the HC is effective in resisting intracranial pressure developed by the brain, a water tank was considered to use a bio-mimicked shape of a shell as a roof. An optimized numerical model was validated experimentally and compared with a conventional specimen. The structural behavior of the bio-mimicked specimen is similar and performs more efficiently than the conventional specimen in capacity ratio, crack formation, and load-carrying capacity. Methodology followed: A Computed Tomography (CT) scan of the HC was obtained in Digital Imaging and Communications in Medicine (DICOM) format for finite element analysis (FEA). From the geometric parameters of the HC, the radius of the curvature-to-thickness ratio was derived for the shell. The span and thickness of the shell under two criteria were considered. The spherical and circular shell behaviors were found to be similar to those of the HC, whereas the elliptical shell behavior was not. We studied the shape effect of the HC with the conventional slab and found that the HC shape has an impact on the behavior and is the most efficient. A bio-mimicked mono column was considered as a supporting column for the water tank and analyzed. Overall, adopting this bio-mimicking of the HC into the shell roof connects nature with sustainable architecture.

Details

Title
Numerical and Experimental Validation for Connecting Nature with Architecture by Mimicking Cranium into a Shell Roof
Author
Gunasekaran, Pennarasi; Kannan Rajkumar, P R  VIAFID ORCID Logo 
First page
2966
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110410534
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.