Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Federated learning (FL) facilitates the collaborative optimization of fault diagnosis models across multiple clients. However, the performance of the global model in the federated center is contingent upon the effectiveness of the local models. Low-quality local models participating in the federation can result in negative transfer within the FL framework. Traditional regularization-based FL methods can partially mitigate the performance disparity between local models. Nevertheless, they do not adequately address the inconsistency in model optimization directions caused by variations in fault information distribution under different working conditions, thereby diminishing the applicability of the global model. This paper proposes a federated adversarial fault diagnosis method driven by fault information discrepancy (FedAdv_ID) to address the challenge of constructing an optimal global model under multiple working conditions. A consistency evaluation metric is introduced to quantify the discrepancy between local and global average fault information, guiding the federated adversarial training mechanism between clients and the federated center to minimize feature discrepancy across clients. In addition, an optimal aggregation strategy is developed based on the information discrepancies among different clients, which adaptively learns the aggregation weights and model parameters needed to reduce global feature discrepancy, ultimately yielding an optimal global model. Experiments conducted on benchmark and real-world motor-bearing datasets demonstrate that FedAdv_ID achieves a fault diagnosis accuracy of 93.09% under various motor operating conditions, outperforming model regularization-based FL methods by 17.89%.

Details

Title
A Federated Adversarial Fault Diagnosis Method Driven by Fault Information Discrepancy
Author
Sun, Jiechen; Zhou, Funa; Chen, Jie; Wang, Chaoge; Hu, Xiong; Wang, Tianzhen  VIAFID ORCID Logo 
First page
718
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
10994300
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110443718
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.