Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents a remote sensing approach for rapidly and automatically generating maps of surface disturbances caused by landslides on the global scale. Our approach not only identifies the locations of these disturbances but also pinpoints the estimated time of their occurrence. Using the Continuous Change Detection and Classification (CCDC) algorithm within the Google Earth Engine (GEE) platform, we analyzed two decades of Landsat 5, 7, and 8 surface reflectance data. We tested this approach in five landslide-prone regions: Iburi (Japan), Kashmir (Pakistan), Karnataka (India), Porgera (Papua New Guinea), and Pasang Lhamu (Nepal). The results were promising, with R2 values ranging up to 0.85, indicating a robust correlation between detected disturbances and actual landslide events compared to manually made inventories. The accuracy metrics further validated our method, with a producer’s accuracy of 75%, a user’s accuracy of 73%, and an F1 score of 75%. Furthermore, the method proved well transferable across different locations. These findings demonstrate the method’s potential as a valuable tool for near real-time and historical analysis of landslide activity, thereby contributing to global disaster management and mitigation efforts.

Details

Title
Global Landslide Finder: Detecting the Time and Place of Landslides with Dense Earth Observation Time Series
Author
Aufaristama, Muhammad  VIAFID ORCID Logo  ; van der Werff, Harald  VIAFID ORCID Logo  ; Botha, Andries E J  VIAFID ORCID Logo  ; van der Meijde, Mark  VIAFID ORCID Logo 
First page
780
Publication year
2024
Publication date
2024
Publisher
MDPI AG
ISSN
2624795X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110496826
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.