It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Droughts and floods are common in the Baro basin and climate change may exacerbate them. This study aimed to investigate the hydrological response to climate change’s impact in the Baro River basin. Four climate models namely, Hadley Centre Global Environmental Model, version 2 (HadGEM2-ES), Max Planck Institute Earth System Model—Low Resolution (MPI-ESM-LR), Coupled Model Version 5, Medium Resolution (CM5A-MR) and European Community Earth System Model (EC-Earth) dynamically downscaled outputs were obtained from Africa coordinated regional downscaling experiment program. The four climate models were evaluated using a suite of statistical measures such as bias, Root Mean Squared Error, and Coefficient of Variation. The bias of the simulated rainfall varies between − 4.20% and − 25.39% suggesting underestimation. The performance of the models differs subject to the performance measures used for evaluation. Before being used in the climate impact analysis, the climate model data was heavily skewed and needed correction. In terms of bias, HadGEM2-ES performed the worst while EC-Earth performed the best. MPI-ESM-LR was the worst performer in terms of RMSE and CM5A-MR was the best. Changes in the hydrological response to climate change were compared to the baseline scenario (1971–2000) under the Representative Concentration Pathway Scenarios (RCP 4.5) for the medium term (2041–2070). The GCM predictions for the RCP 4.5 scenarios suggested that, in the medium period (2041–2070) the maximum temperature in the Baro River basin will probably rise by 2.1 °C for MPI-ESM-LR and 2.49 °C for CM5A-MR, while the minimum temperature would likely climb by 1.7 °C to EC-Earth and 2.8 °C for HadGEM2-ES. Annual rainfall is expected to fall by 7.02% for CM5A-MR and 17.01% for HadGEM2-ES, while annual evapotranspiration potential is likely to rise. Except from March to May CM5A-MR consistently generated the greatest amount of streamflow change, while MPI-ESM-LR consistently generated the highest magnitude of streamflow change. The annual streamflow reduction is consistent with the annual precipitation reduction and increased annual potential evapotranspiration. Generally, climate change is predicted to have a significant impact on the hydrological response in the Baro River basin under the RCP 4.5 scenario.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Mattu University, Department of Water Resources and Irrigation Engineering, Mattu, Ethiopia (ISNI:0000 0004 8496 1254)
2 Debre Markos University, Department of Natural Resource Management, Debre Markos, Ethiopia (GRID:grid.449044.9) (ISNI:0000 0004 0480 6730)