It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
To address the complex challenges in energy systems, this study proposes a novel optimization framework that integrates fuzzy decision support and unstructured data processing technologies. This framework aims to improve efficiency, reduce costs, decrease environmental impact, increase system flexibility, and enhance user satisfaction, thereby promoting sustainable development in the energy industry. The framework combines the innovative Energy Semantic Mapping Model (ESMM) and the advanced deep learning architecture ResNet to process textual and visual data effectively. ESMM enables accurate prediction of energy demand, while ResNet significantly reduces equipment maintenance costs and improves energy distribution efficiency. These advancements are critical as they address the limitations of existing approaches in handling large-scale unstructured data and making informed decisions under uncertainty. The Environmental Impact Assessment (EIA) confirms the model's effectiveness in reducing carbon emissions. A comprehensive economic analysis demonstrates substantial cost savings in energy procurement and operations and maintenance, with overall savings exceeding 25%. Enhanced user satisfaction and reduced system response times further validate the practical utility of the proposed approach. Additionally, a genetic algorithm is used to optimize the fuzzy rule base, enhancing the robustness and adaptability of the model. Experimental results show superior performance compared to traditional systems, providing strong empirical evidence for the intelligent transformation of energy systems. This research contributes to the field by offering a more sophisticated and flexible solution for managing energy systems, particularly in terms of leveraging unstructured data and improving decision-making processes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Yantai Nanshan University, Office of Academic Affairs, Yantai, China (GRID:grid.495275.8) (ISNI:0000 0004 1772 1605)