It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Pulse rate (PR) and respiratory rate (RR) are two of the most important vital signs. Monitoring them would benefit from easy-to-use technologies. Hence, wearable devices would, in principle, be ideal candidates for such systems. The neck, although highly susceptible to artifacts, presents an attractive location for a diverse pool of physiological biomarkers monitoring purposes such as airflow sensing in a non-obstructive manner. This paper presents a methodology for PR and RR estimation using photoplethysmography (PPG) and accelerometry (Acc) sensors placed on the neck. Neck PPG and Acc signals were recorded from 22 healthy participants for RR estimation, where the resting subjects performed guided breathing following a visual metronome. Neck PPG signals were obtained from 16 healthy participants who breathed through an altitude generator machine in order to acquire a wider range of PR readings while at rest. The proposed methodology was able to provide rate estimates via a combination of recursive FFT-based dominance scoring coupled with an exponentially weighted moving average (EWMA)-driven aggregation scheme. The recursion aimed at bypassing sudden intra-window amplitude deviations caused by momentary artifacts, while the EWMA-based aggregation was utilized for handling inter-window artifact-induced deviations. To further improve estimation stability and confidence, estimates were calculated in the form of rate bands taking into account the relevant clinically acceptable error margins, and results when considering rate values and rate bands are presented and discussed. The framework was able to achieve an overall pulse rate value accuracy of
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Imperial College London, Wearable Technologies Lab, Department of Electrical and Electronic Engineering, London, UK (GRID:grid.7445.2) (ISNI:0000 0001 2113 8111)