Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study examines the effects of stick-out, welding current, welding speed, and voltage on the mechanical characteristics and microstructure of MIG welding on SUS 304 stainless steel and S20C steel. The Taguchi method was used to maximize the experiment’s outcomes. Fine columnar dendrites formed at fusion sites, and δ-ferrite phases with dark lines and shapes accumulated between the fusion line and the austenite phases. A welding current of 110 A, voltage of 15 V, welding speed of 500 mm/min, and stick-out of 12 mm were the optimal settings for the ultimate tensile strength (UTS). The UTS value confirmation was 469.4 MPa, which agrees with the estimated value determined using the Taguchi technique. The tensile test revealed that welding current had a far greater impact on mechanical qualities than welding voltage, speed, and stick-out distance. The ideal welding parameters for flexural strength were as follows: stick-out of 12 mm, arc voltage of 15 V, welding speed of 450 mm/min, and welding current of 110 amp. The Taguchi method is useful, as evidenced by the validation of the flexure strength of 1937.45 MPa, which is much greater than the other samples. The impact of the thermal annealing process on the mechanical characteristics of the dissimilar weld joints could be the subject of future research. The investigation results may offer more insightful information about the dissimilar welding field.

Details

Title
Material Strength Optimization of Dissimilar MIG Welding between Carbon and Stainless Steels
Author
Hoang Van Huong 1 ; Thanh Tan Nguyen 1 ; Van-Thuc, Nguyen 1 ; Van Thanh Tien Nguyen 2   VIAFID ORCID Logo 

 Faculty of Mechanical Engineering, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City 71307, Vietnam 
 Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, Nguyen Van Bao Street, Ward 4, Go Vap District, Ho Chi Minh City 70000, Vietnam 
First page
1011
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110663368
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.