Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Multi-component thermal luid technology optimizes development effects and has a strong adaptability, providing a new choice for the efficient development of heavy oil reservoirs. However, due to the significant differences between the phase behavior of multi-component thermal-fluid-heavy oil systems and conventional systems, and the lack of targeted and large-scale research, key issues such as the phase behavior of these systems are unclear. This research studies the phase behavior and influencing factors of emulsions and foamy oil in a multi-component thermal-fluid-heavy oil system through high-temperature and high-pressure PVT experiments, revealing the characteristics of the system’s special phase behavior. In the heavy oil emulsion system, the water content directly affects changes in the system’s phase state. The higher the temperature, the larger the phase transition point, and the two are positively correlated. As the stirring speed increases, the phase transition point first increases and then decreases. The amount of dissolved gas is negatively correlated with the size of the phase transition point, and dissolution can form foamy oil. In the heavy oil–foamy oil system, the dissolution capacity of CO2 is greater than that of multi-component gases, which is greater than that of N2. A high water content and high temperature are not conducive to the dissolution of multi-component gases. While an increase in stirring speed is beneficial for the dissolution of gases, there are limitations to its enhancement ability. Therefore, the development of multi-component thermal fluids should avoid the phase transition point of emulsions and promote the dissolution of multi-component gases.

Details

Title
Research on the Phase Behavior of Multi-Component Thermal-Fluid-Heavy Oil Systems
Author
Dou, Xiangji 1 ; Liu, Mingjie 1 ; Zhao, Xinli 1   VIAFID ORCID Logo  ; He, Yanfeng 1 ; Guo, Erpeng 2 ; Lu, Jiahao 1 ; Ma, Borui 1 ; Chen, Zean 1 

 School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China 
 Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Beijing 100083, China 
First page
2047
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110670150
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.