Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The skew distribution has the characteristic of appropriately modeling asymmetric unimodal data. However, in practice, there are several cases in which the data present more than one mode. In the literature, it is possible to find a large number of authors who have studied extensions based on the skew distribution to model this type of data. In this article, a new family is introduced, consisting of a multimodal modification to the family of skew distributions. Using the methodology of the weighted version of a function, we perform the product of the density function of a family of skew distributions with a polynomial of degree 4, thus obtaining a more flexible model that allows modeling data sets, whose distribution contains at most three modes. The density function, some properties, moments, skewness coefficients, and kurtosis of this new family are presented. This study focuses on the particular cases of skew-normal and Laplace distributions, although it can be applied to any other distribution. A simulation study was carried out, to study the behavior of the model parameter estimates. Illustrations with real data, referring to medicine and environmental data, show the practical performance of the proposed model in the two particular cases presented.

Details

Title
A New Multimodal Modification of the Skew Family of Distributions: Properties and Applications to Medical and Environmental Data
Author
Reyes, Jimmy  VIAFID ORCID Logo  ; Rojas, Mario A; Cortés, Pedro L; Arrué, Jaime  VIAFID ORCID Logo 
First page
1224
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110702134
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.