Full text

Turn on search term navigation

© 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Grain water content (GWC) is a key determinant for mechanical harvesting of maize (Zea mays). In our previous research, we identified a quantitative trait locus, qGWC1, associated with GWC in maize. Here, we examined near-isogenic lines (NILs) NILL and NILH that differed at the qGWC1 locus. Lower GWC in NILL was primarily attributed to reduced grain water weight (GWW) and smaller fresh grain size, rather than the accumulation of dry matter. The difference in GWC between the NILs became more pronounced approximately 35 d after pollination (DAP), arising from a faster dehydration rate in NILL . Through an integrated analysis of the transcriptome, proteome, and metabolome, coupled with an examination of hormones and their derivatives, we detected a marked decrease in JA, along with an increase in cytokinin, storage forms of IAA (IAA-Glu, IAA-ASP), and IAA precursor IPA in immature NILL kernels. During kernel development, genes associated with sucrose synthases, starch biosynthesis, and zein production in NILL , exhibited an initial up-regulation followed by a gradual down-regulation, compared to those in NILH. This discovery highlights the crucial role of phytohormone homeostasis and genes related to kernel development in balancing GWC and dry matter accumulation in maize kernels.

Details

Title
Multi-omics analysis reveals the pivotal role of phytohormone homeostasis in regulating maize grain water content
Author
Liu, Yuanliang 1 ; Li, Manman 1 ; Liu, Jianju 1 ; Deng, Suining 1 ; Zhang, Yan 2 ; Xia, Yuanfeng; Liu, Baoshen; Xu, Mingliang

 State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China 
 Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, Jilin, China 
Pages
1081-1092
Publication year
2024
Publication date
Aug 2024
Publisher
KeAi Publishing Communications Ltd
ISSN
20955421
e-ISSN
22145141
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110759265
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.