It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The integration of natural fibers into Fiber Reinforced Polymers (FRPs) has emerged as a promising avenue for sustainable and high-performance composite materials. Natural fibers, derived from plants, offer notable advantages such as renewability, low cost, and environmental friendliness. Among these natural fibers, Hibiscus Rosa-Sinensis (HRS) plant fibers have gained significant attention owing to their widespread availability and unique mechanical properties. In this study, HRS fibers were chemically treated using Sodium Hydroxide (NaOH), Potassium Permanganate (KMnO4), and Acetic Acid (CH3COOH) at different weight percentages (3, 4, 5 Wt.%) and solutionizing times (1, 2, 3 h) based on Taguchi’s L27 orthogonal array. The fibers, extracted from epidermis of the stems, underwent cleaning and chemical treatment after water retting. The crystallinity index, determined via X-ray Diffraction (XRD), indicated a maximum value of 65.77%. Thermo-gravimetric analysis (TGA) exhibited a degradation temperature of 365.24 °C and a material loss of 63.11%. Potassium Permanganate treatment at 4 Wt.% and 3 h of solutionizing time has yielded the best results. Multi-Layer Perceptron Artificial Neural Network (MLP-ANN) has been successfully applied to accurately predict the output physical characteristics of chemically treated HRS fibers using experimental data. The results are in close alignment with the literature. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) analyses have provided valuable insights into the microstructure and constituents of the chemically treated HRS fibers. This research emphasises on the effectiveness of the chemical treatment process in enhancing the properties of HRS plant fibers for potential composite applications.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Manipal Academy of Higher Education, Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal, India (GRID:grid.411639.8) (ISNI:0000 0001 0571 5193)
2 Manipal Academy of Higher Education, Department of Chemistry, Manipal Institute of Technology, Manipal, India (GRID:grid.411639.8) (ISNI:0000 0001 0571 5193)