Abstract

Content-based image retrieval (CBIR) systems are essential for efficiently searching large image datasets using image features instead of text annotations. Major challenges include extracting effective feature representations to improve accuracy, as well as indexing them to improve the retrieval speed. The use of pre-trained deep learning models to extract features has elicited interest from researchers. In addition, the emergence of open-source vector databases allows efficient vector indexing which significantly increases the speed of similarity search. This paper introduces a novel CBIR system that combines transfer learning with vector databases to improve retrieval speed and accuracy. Using a pre-trained VGG-16 model, we extract high-dimensional feature vectors from images, which are stored and retrieved using the Milvus vector database. Our approach significantly reduces retrieval time, achieving real-time responses while maintaining high precision and recall. Experiments conducted on ImageClef, ImageNet, and Corel-1k datasets demonstrate the system’s effectiveness in large-scale image retrieval tasks, outperforming traditional methods in both speed and accuracy.

Details

Title
Content-Based Image Retrieval Using Transfer Learning and Vector Database
Author
PDF
Publication year
2024
Publication date
2024
Publisher
Science and Information (SAI) Organization Limited
ISSN
2158107X
e-ISSN
21565570
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3112660542
Copyright
© 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.