Abstract

Ex vivo lung perfusion (EVLP) enables advanced assessment of human lungs for transplant suitability. We developed a convolutional neural network (CNN)-based approach to analyze the largest cohort of isolated lung radiographs to date. CNNs were trained to process 1300 longitudinal radiographs from n = 650 clinical EVLP cases. Latent features were transformed into principal components (PC) and correlated with known radiographic findings. PCs were combined with physiological data to classify clinical outcomes: (1) recipient time to extubation of <72 h, (2) ≥ 72 h, and (3) lungs unsuitable for transplantation. The top PC was significantly correlated with infiltration (Spearman R: 0·72, p < 0·0001), and adding radiographic PCs significantly improved the discrimination for clinical outcomes (Accuracy: 73 vs 78%, p = 0·014). CNN-derived radiographic lung features therefore add substantial value to the current assessments. This approach can be adopted by EVLP centers worldwide to harness radiographic information without requiring real-time radiological expertise.

Details

Title
Improving prognostic accuracy in lung transplantation using unique features of isolated human lung radiographs
Author
Chao, Bonnie T. 1   VIAFID ORCID Logo  ; Sage, Andrew T. 2 ; McInnis, Micheal C. 3   VIAFID ORCID Logo  ; Ma, Jun 4 ; Grubert Van Iderstine, Micah 5   VIAFID ORCID Logo  ; Zhou, Xuanzi 6 ; Valero, Jerome 5 ; Cypel, Marcelo 2 ; Liu, Mingyao 2   VIAFID ORCID Logo  ; Wang, Bo 7 ; Keshavjee, Shaf 8 

 University Health Network, Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Canada (GRID:grid.231844.8) (ISNI:0000 0004 0474 0428); University of Toronto, Institute of Biomedical Engineering, Toronto, Canada (GRID:grid.17063.33) (ISNI:0000 0001 2157 2938) 
 University Health Network, Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Canada (GRID:grid.231844.8) (ISNI:0000 0004 0474 0428); University of Toronto, Institute of Medical Science, Temerty Faculty of Medicine, Toronto, Canada (GRID:grid.17063.33) (ISNI:0000 0001 2157 2938); University of Toronto, Department of Surgery, Temerty Faculty of Medicine, Toronto, Canada (GRID:grid.17063.33) (ISNI:0000 0001 2157 2938) 
 University Health Network, University Medical Imaging Toronto, Toronto General Hospital, Toronto, Canada (GRID:grid.231844.8) (ISNI:0000 0004 0474 0428); University of Toronto, Department of Medical Imaging, Temerty Faculty of Medicine, Toronto, Canada (GRID:grid.17063.33) (ISNI:0000 0001 2157 2938) 
 University Health Network, Peter Munk Cardiac Centre, Toronto, Canada (GRID:grid.231844.8) (ISNI:0000 0004 0474 0428); University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Canada (GRID:grid.17063.33) (ISNI:0000 0001 2157 2938); University of Toronto, Vector Institute, Toronto, Canada (GRID:grid.17063.33) (ISNI:0000 0001 2157 2938) 
 University Health Network, Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Canada (GRID:grid.231844.8) (ISNI:0000 0004 0474 0428) 
 University Health Network, Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Canada (GRID:grid.231844.8) (ISNI:0000 0004 0474 0428); University of Toronto, Institute of Medical Science, Temerty Faculty of Medicine, Toronto, Canada (GRID:grid.17063.33) (ISNI:0000 0001 2157 2938) 
 University Health Network, Peter Munk Cardiac Centre, Toronto, Canada (GRID:grid.231844.8) (ISNI:0000 0004 0474 0428); University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Canada (GRID:grid.17063.33) (ISNI:0000 0001 2157 2938); University of Toronto, Vector Institute, Toronto, Canada (GRID:grid.17063.33) (ISNI:0000 0001 2157 2938); University Health Network, AI Hub, Toronto, Canada (GRID:grid.231844.8) (ISNI:0000 0004 0474 0428); University of Toronto, Department of Computer Science, Toronto, Canada (GRID:grid.17063.33) (ISNI:0000 0001 2157 2938) 
 University Health Network, Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Canada (GRID:grid.231844.8) (ISNI:0000 0004 0474 0428); University of Toronto, Institute of Biomedical Engineering, Toronto, Canada (GRID:grid.17063.33) (ISNI:0000 0001 2157 2938); University of Toronto, Institute of Medical Science, Temerty Faculty of Medicine, Toronto, Canada (GRID:grid.17063.33) (ISNI:0000 0001 2157 2938); University of Toronto, Department of Surgery, Temerty Faculty of Medicine, Toronto, Canada (GRID:grid.17063.33) (ISNI:0000 0001 2157 2938); University Health Network, AI Hub, Toronto, Canada (GRID:grid.231844.8) (ISNI:0000 0004 0474 0428) 
Pages
272
Publication year
2024
Publication date
Dec 2024
Publisher
Nature Publishing Group
e-ISSN
23986352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3112676484
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.