It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In recent times, the sensitivity of low-mass direct dark matter searches has been limited by unknown low energy backgrounds close to the energy threshold of the experiments known as the low energy excess (LEE). The CRESST experiment utilises advanced cryogenic detectors constructed with different types of crystals equipped with Transition Edge Sensors (TESs) to measure signals of nuclear recoils induced by the scattering of dark matter particles in the detector. In CRESST, this low energy background manifests itself as a steeply rising population of events below 200 eV. A novel detector design named doubleTES using two identical TESs on the target crystal was studied to investigate the hypothesis that the events are sensor-related. We present the first results from two such modules, demonstrating their ability to differentiate between events originating from the crystal’s bulk and those occurring in the sensor or in its close proximity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Max-Planck-Institut für Physik, Garching bei München, Germany (GRID:grid.435824.c) (ISNI:0000 0001 2375 0603)
2 Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften, Wien, Austria (GRID:grid.450258.e) (ISNI:0000 0004 0625 7405); Atominstitut, Technische Universität Wien, Wien, Austria (GRID:grid.5329.d) (ISNI:0000 0004 1937 0669)
3 INFN, Laboratori Nazionali del Gran Sasso, Assergi, Italy (GRID:grid.466877.c) (ISNI:0000 0001 2201 8832); GSSI-Gran Sasso Science Institute, L’Aquila, Italy (GRID:grid.466750.6) (ISNI:0000 0004 6005 2566)
4 Max-Planck-Institut für Physik, Garching bei München, Germany (GRID:grid.435824.c) (ISNI:0000 0001 2375 0603); Universidade de Coimbra, LIBPhys-UC, Departamento de Fisica, Coimbra, Portugal (GRID:grid.8051.c) (ISNI:0000 0000 9511 4342)
5 Comenius University, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia (GRID:grid.7634.6) (ISNI:0000000109409708)
6 INFN, Laboratori Nazionali del Gran Sasso, Assergi, Italy (GRID:grid.466877.c) (ISNI:0000 0001 2201 8832)
7 Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften, Wien, Austria (GRID:grid.450258.e) (ISNI:0000 0004 0625 7405)
8 Max-Planck-Institut für Physik, Garching bei München, Germany (GRID:grid.435824.c) (ISNI:0000 0001 2375 0603); Università di Milano Bicocca, Dipartimento di Fisica, Milan, Italy (GRID:grid.7563.7) (ISNI:0000 0001 2174 1754)
9 Technische Universität München, Physik-Department, TUM School of Natural Sciences, Garching, Germany (GRID:grid.6936.a) (ISNI:0000 0001 2322 2966); Walther-Meißner-Institut für Tieftemperaturforschung, Garching, Germany (GRID:grid.423977.c) (ISNI:0000 0001 0940 3517)
10 Technische Universität München, Physik-Department, TUM School of Natural Sciences, Garching, Germany (GRID:grid.6936.a) (ISNI:0000 0001 2322 2966)
11 Max-Planck-Institut für Physik, Garching bei München, Germany (GRID:grid.435824.c) (ISNI:0000 0001 2375 0603); Universidade de São Paulo, Instituto de Física, São Paulo, Brazil (GRID:grid.11899.38) (ISNI:0000 0004 1937 0722)
12 Eberhard-Karls-Universität Tübingen, Tübingen, Germany (GRID:grid.10392.39) (ISNI:0000 0001 2190 1447)
13 University of Oxford, Department of Physics, Oxford, UK (GRID:grid.4991.5) (ISNI:0000 0004 1936 8948)
14 INFN, Laboratori Nazionali del Gran Sasso, Assergi, Italy (GRID:grid.466877.c) (ISNI:0000 0001 2201 8832); Università degli Studi di Cassino e del Lazio Meridionale, Dipartimento di Ingegneria Civile e Meccanica, Cassino, Italy (GRID:grid.21003.30) (ISNI:0000 0004 1762 1962)
15 INFN, Laboratori Nazionali del Gran Sasso, Assergi, Italy (GRID:grid.466877.c) (ISNI:0000 0001 2201 8832); Università di Milano Bicocca, Dipartimento di Fisica, Milan, Italy (GRID:grid.7563.7) (ISNI:0000 0001 2174 1754)
16 Max-Planck-Institut für Physik, Garching bei München, Germany (GRID:grid.435824.c) (ISNI:0000 0001 2375 0603); Technische Universität München, Physik-Department, TUM School of Natural Sciences, Garching, Germany (GRID:grid.6936.a) (ISNI:0000 0001 2322 2966)
17 Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften, Wien, Austria (GRID:grid.450258.e) (ISNI:0000 0004 0625 7405); ETH Zurich, Department of Physics, Zurich, Switzerland (GRID:grid.5801.c) (ISNI:0000 0001 2156 2780); Paul Scherrer Institute, ETH Zurich-PSI Quantum Computing Hub, Villigen, Switzerland (GRID:grid.5991.4) (ISNI:0000 0001 1090 7501)