It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background: Shunt Infection is a common complication of shunt insertion in children which can lead to bad neuro-developmental conditions and impose a considerable economic burden for the health care system. So, identifying predictive factors of shunt infection could help us in the proper improvement of this deteriorating condition.
Methods:In this study, related risk factors of 68 patients with history of shunt infection and 80 matched controls without any history of shunt infection, who were all operated in a single referral hospital were assessed. Three machine learning (ML)-based measures including sparsity, correlation, and redundancy along with specialist’s score were applied to select the most important predictive risk factors for shunt infection. ML was determined by summation of sparsity, correlation and redundancy measures, and the final total score was considered as normalization (ML-based score + specialist score).
Results:According to the total score, prematurity, first ventriculoperitoneal shunting (VPS) age, intraventricular hemorrhage (IVH), myelomeningocele (MMC) and low birth weight had higher weights as shunt infection risk factors. icterus, trauma, co-infection and tumor had the lowest weights and history of meningitis and number of shunt revisions were defined as intermediate risk factors.
Conclusion:The “ML-based clinical adjusted” method may be used as a complementary tool to help neurosurgeons in better patient selection and more accurate follow-up of children with higher risk of shunt infection.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer