It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
In recent years, as deep learning has received widespread attention in the field of heart disease, some studies have explored the potential of deep learning based on coronary angiography (CAG) or coronary CT angiography (CCTA) images in detecting the extent of coronary artery stenosis. However, there is still a lack of a systematic understanding of its diagnostic accuracy, impeding the advancement of intelligent diagnosis of coronary artery stenosis. Therefore, we conducted this study to review the accuracy of image-based deep learning in detecting coronary artery stenosis.
Methods
We retrieved PubMed, Cochrane, Embase, and Web of Science until April 11, 2023. The risk of bias in the included studies was appraised using the QUADAS-2 tool. We extracted the accuracy of deep learning in the test set and performed subgroup analyses by binary and multiclass classification scenarios. We performed a subgroup analysis based on different degrees of stenosis and applied a double arcsine transformation to process the data. The analysis was done by using R.
Results
Our systematic review finally included 18 studies, involving 3568 patients and 13,362 images. In the included studies, deep learning models were constructed based on CAG and CCTA. In binary classification tasks, the accuracy for detecting > 25%, > 50% and > 70% degrees of stenosis at the vessel level were 0.81 (95% CI: 0.71–0.85), 0.73 (95% CI: 0.58–0.88) and 0.61 (95% CI: 0.56–0.65), respectively. In multiclass classification tasks, the accuracy for detecting 0–25%, 25–50%, 50–70%, and 70–100% degrees of stenosis at the vessel level were 0.78 (95% CI: 0.73–0.84), 0.86 (95% CI: 0.78–0.93), 0.83 (95% CI: 0.70–0.97), and 0.70 (95% CI: 0.42–0.98), respectively.
Conclusions
Our study shows that deep learning models based on CAG and CCTA appear to be relatively accurate in diagnosing different degrees of coronary artery stenosis. However, for various degrees of stenosis, their accuracy still needs to be further improved.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer