Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Binary neural networks (BNNs) that use 1-bit weights and activations have garnered interest as extreme quantization provides low power dissipation. By implementing BNNs as computation-in-memory (CIM), which computes multiplication and accumulations on memory arrays in an analog fashion, namely, analog CIM, we can further improve the energy efficiency to process neural networks. However, analog CIMs are susceptible to process variation, which refers to the variability in manufacturing that causes fluctuations in the electrical properties of transistors, resulting in significant degradation in BNN accuracy. Our Monte Carlo simulations demonstrate that in an SRAM-based analog CIM implementing the VGG-9 BNN model, the classification accuracy on the CIFAR-10 image dataset is degraded to below 50% under process variations in a 28 nm FD-SOI technology. To overcome this problem, we present a variation-aware BNN framework. The proposed framework is developed for SRAM-based BNN CIMs since SRAM is most widely used as on-chip memory; however, it is easily extensible to BNN CIMs based on other memories. Our extensive experimental results demonstrate that under process variation of 28 nm FD-SOI, with an SRAM array size of 128×128, our framework significantly enhances classification accuracies on both the MNIST hand-written digit dataset and the CIFAR-10 image dataset. Specifically, for the CONVNET BNN model on MNIST, accuracy improves from 60.24% to 92.33%, while for the VGG-9 BNN model on CIFAR-10, accuracy increases from 45.23% to 78.22%.

Details

Title
A Variation-Aware Binary Neural Network Framework for Process Resilient In-Memory Computations
Author
Minh-Son Le  VIAFID ORCID Logo  ; Thi-Nhan Pham  VIAFID ORCID Logo  ; Thanh-Dat Nguyen  VIAFID ORCID Logo  ; Chang, Ik-Joon  VIAFID ORCID Logo 
First page
3847
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3116601628
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.